ubQL, a Language for Programming Distributed Query Systems

(Extended Abstract)

Arnaud Sahuguet Val Tannen
{sahuguet,val}@saul.cis.upenn.edu

University of Pennsylvania

Abstract

ubQL is a distributed query language for programming large-scale distributed query systems such as
resource sharing systems. The language is obtained by adding a small set of mobile process primitives
(communication channels, migration operators, etc.) on top of any traditional query language. Queries
are encapsulated into processes and can migrate between sites thus enabling cooperation. An important
methodological device is the separation of the installation (including migration) of query processes from the
distributed ezecution of the queries.

In this paper, we give an overview of ubQL, show how to encode widely used distributed query patterns
such as chaining, recruiting, query/data/hybrid shipping, etc., and evaluate some language-based rewrite
strategies for the installation of ubQL queries that use only partial and distributed knowledge of execution
costs.

1 Introduction and Motivation

Our work was motivated by distributed query systems that do not fit well within the traditional distributed
databases paradigm [7]. A prime example are systems for the large-scale distribution or exchange of resources
such as software packages, scientific data, or multimedia files. There are several sources of complexity in such
systems. In addition to sheer scale, there may be many layers of sites between a query site and the resource sites,
as well as significant variability. This puts limits on what “central” sites can know and do and also on what
individual sites can achieve by looking around aimlessly to discover resources. In such systems, query execution
can only be planned in a distributed way using just partial and local knowledge. Techniques such as brokering,
proxying, caching, publish/subscribe, advertising, chaining, referral, recruiting, etc., become essential in such
systems. Existing architectures select just one or two techniques from this list, hard-code them, and then build
around. The resulting architectures scale with difficulty.

To make such systems much more scalable, we propose a distributed query language, ubQL; in fact, a set
of primitives for process manipulation that can be added to any query language. The language encapsulates
queries into processes and uses process migration as the basic primitive for cooperation between sites. Thus,
instead of hard-coded, we make the techniques employed by various sites programmable in ubQL. The software
running at each site can be seen as a copy of the interpreter of ubQL. It supports separately query process
installation and then distributed query ezrecution. The language relies on a small set of primitives capturing
concurrent interaction, process migration and communication via channels. Our approach is to identify a few
basic rewrite steps that each site supports and then show how these plus migration can be used to implement
all the techniques mentioned above (we call these “distributed query patterns” in analogy with software design
patterns). Other benefits of choosing a small set of basic mechanisms are reliability of the implementation and
the ability to reason formally about the behavior of the interpreter.

The rest of the paper is organized as follows. In Section 2, we present ubQL language constructs. We
then revisit some traditional distributed query patterns and show they can be encoded in the language. In
Section 4, we explain some installation algorithms that use only partial and distributed knowledge and show how
they compare to traditional distributed query optimization for a specific experimental configuration. We finally

present our conclusions and some future work.

2 The Language

Language Design
The starting point was the desire to express/describe the following elements:
e data, both virtual (views or aliases) and physical (files, relations)
® queries
e sites (virtual data is defined, physical data is located and queries are evaluated at various sites)
e processes that describe the concurrent execution of multiple queries at various sites
e migration, to permit queries to move from site to site
e channels, to support communication among processes
An important requirement is independence of the underlying query language that handles the specific data
(eg., SQL, XQuery [9], OQL). Still, the data will consist of large values and streaming communication must
be allowed by ubQL. Finally, we believe that using a small set of orthogonal primitives improves optimization
opportunities.

Language Overview

The building bricks of the language are query processes (gp). The language borrows ideas from mobile process
calculi [6] especially the concept of query process migration. ubQL consists of sites, channels, expressions and
query processes.

The underlying query language supplies data-specific operators (eg., select-from-where). ubQL expressions are
built from these as well as file names (data available locally), aliases (view names, defined locally or at remote
sites) and local channel names (data arriving on the channel).

Processes consist of a left hand side, a right hand side and a state. The right hand side is always an expression.
They can be of two kinds, as described below:

Syntax channel & exp [state] aliass & exp [state]
state € {pending, pending@site, execute} state € {replicated}
Meaning “evaluate exp and send it on channel” “replace alias with exp”

A process is always located at a given site (state pending or execute), but can migrate to another site (state
pending@remote). Pending and replicated query processes can interact to produce new query processes. During
such an interaction, pending ¢p’s disappear during the interaction (they are consumed) while replicated gp’s
remain (they are used but a copy remains).

Examples of query processes and expressions are presented in Figure 1.

I Result@Client O Catalog@Site , [pending] I
Shoriny Porta Catalog@Site , O Products@Site ; «
(Sitey) / Companies@Site , [R]
~_ __—
s

ite , O CompRevi OLw
CompProfile @WSJ [R]

__ - WCataoy@Sitey)
Shorving Porta ™\ cata oy - Products « Companies
(Sitey) /
~———

Products - ProdSrec w ProdReview Comvanies - ComReview o ComrProfile. | Products@Site , O ProdSpec @CMag @ |

ProdReview @AOL [R]

Comrany Porta
\ (Site,)

Comrany Porta
\ (Site,)

Troduct Porta)
(5 te,)

Product Porta)
Isite) U

ProdRs
ProdSvec rocReview ComvProf e IPrudSpec @CMag O file [R] | ProdReview @AOLO file [R] ICumpProliIe @wsao file [R] |

ComvRev ew

CompReview@AOLO file [R]

Figure 1: A typical mediator architecture (left) and its encoding in ubQL (right)

The operational semantics of the language consists of two separate stages: installation and execution. A
useful analogy is that installation is like laying down pipes between the site that originated the query and the

sites that have the data, using migration to make use of intermediary sites along the way. Once the pipes are
laid down, we can “turn on the faucets” and this is the execution stage. The data flows and it is processed into
the eventual answer.

To a large extent, ubQL execution follows established experience in distributed databases. The data is
streamed through pipelined operators (one does not need all the data to start computing) using channels between
sites. Techniques such as XJoin [8] can be used profitably. The originality of ubQL is its treatment of installation
and in the rest of the paper, we will focus only on installation.

Installation
The installation of query processes is based on three simple rewrite rules: merge, split and tag.

o Merge
Merge is inspired from the communication reduction rules of mw-calculus-like languages [6]. It is used — among
other things — to resolve local views. Merge can be applied on two pending gp’s or one pending and one replicated
gp. The merge occurs when the left-hand side of one gp (pending or replicated) matches with the right-hand
side of a pending ¢p, as illustrated in the table below. Replicated query processes do not get consumed by the
rewrite.

out & Ei(view@Iocal) [pending] , -pop out & E;(E2) [pending]
view@local & E, [pending] -

out & Ei(view@Iocal) [pending] , -.op out € E1(E2) [pending]
view@local & E: [replicated)] - view@Qlocal & E: [replicated)]

o Split

Split can be seen as the opposite of merge. It is used to separate a query process into some sub-query-processes
that will perform parts of the computation. It is crucial that the semantics of the original expression be conserved.
In the example below, the expression E can be split into E;(Ez) only if we have E = E;(E2). Note that this
equivalence usually depends on the semantics of the underlying query language.

out & E [pending] SPLIT
SPLIT,

out & E;(ch@local) [pending]
ch@local < E: [pending]

e Tag

Tag changes the state of a query process. Query processes that do not need further installation are marked for
execution. Query processes that cannot be further installed locally (because they require some interaction with
remote ¢p’s) are marked for migration.

if E contains only files and channels

TAG
-

out € E [pending] out € E [execute]

if E contains only remote aliases

TAG
-

out & E [pending] out & E [pending@remote]

3 Encoding of Some Distributed Query Patterns

We have seen in Figure 1 how view definitions (either materialized or virtual) and queries are represented in the
language. We now show how distributed query patterns (in the spirit of design patterns for software engineering)
can be described.

Chaining, Recruiting, Referral
These are three facilitating patterns used in software agents architectures and in directory services (LDAP). The
three patterns are illustrated in Figure 2-left.

For the sake of illustration, we will assume the existence of three sites: the client, a remote server and the
local site where the query process ch;@client & E(v@server) is pending. The result has to be sent to the client
site, while the evaluation of the query requires some data available at the server site.

o Chaining

For chaining, the local site will ultimately send the answer to the client. The pending query process is split into
two new query processes: the first gp expects some data on a local channel chy and forwards it to the client; the
second ¢p will evaluate the expression and send it on this local channel. The first gp cannot be further installed
and is tagged for execution. The second gp cannot be further installed locally (it refers to a remote view) and is
marked for migration.

SPLIT, TAG

———— chy@client & E(chs@local) [pending] — ch;1@client & E(cha@local) [execute]
chy@local & v@server [pending] TAG, chy@local & v@server [pending@server]

o Recruiting

For recruiting the local site decides to forward the query process to another site (the server in our example).
From the client point of view, the answer will come from a site different from the one it addressed the query too.
Something to keep in mind is that the local site can rewrite the query before it forwards it.

TAG, chy@client & E(v@server) [pending@server]

Referral is a particular case of recruiting where the recruited site in the originating site.

¢ | uery shirriny

e
.. Ls;l .. 18,1 .. 18,1

N BRG] (&
.. 1S4 'T CEE— =l ‘

Figure 2: Chaining, Referral, Recruiting (left), Data/Query Shipping (right)

Data/Query/Hybrid Shipping

We now revisit some traditional database techniques for distributed query evaluation, as illustrated in Figure 2-
right. The query process res@client & AQS; < B@S, is pending at the local site (site L). For all cases, the local
site will use chaining, i.e. the result will be available locally before being sent to the client.

e Data shipping

For data shipping, the local site will perform the join locally and will have the data shipped from sites S; and
So. The local site splits the pending gp into three new pending g¢p’s: one to perform the join and one to retrieve
each relation from the remote sites. The newly created ¢p’s are then tagged for execution and migration.

SPLIT, res@client & chy@local b chy@local [pending] ZLAG, chy@client & E(chz@local) [execute]
chi@local & A®S; [pending] TA%, chy@local & AQS; [pending@S1]
chy@local & B@S, [pending] LAG, chy@local & BOS; [pending@S,]

o Query shipping

For query shipping, the local site will decide to have the join evaluated at one of the remote sites. The pending
gp is split into two new gp’s one to get the result and send it to the client and one to evaluate the query remotely.
The shipping of the query is done by tagging the ¢gp with the join for migration.

SPLIT, res@client < chi@local [pending] TAC, res@client < ch @local [execute]

chy@local & A@S; 1 B@S, [pending] —2% chy@local < AQS; 1 BOS, [pending®S;]

Hybrid shipping is a combination of both. We can also express other patterns such as subscription, caching,
proxying, etc. See the full version of the paper for a description of them.

4 Installation Algorithm and Installation Strategies

In the previous section we have shown how traditional ways to evaluate queries in a distributed setting can
be captured using our language. More interestingly, we would like to start with a given configuration (some
replicated gp’s available at some sites and a query pending at one site) and use our rewrite rules to produce a

good execution plan. The installation algorithm can be described as follows:
Installation Algorithm

while (true)

1

2 pick the next g¢p

3 apply MERGE !'! multiple choices !!

4 normalize (query language dependent)
5 apply SPLIT !'! multiple choices !!

6 apply TAG !l multiple choices !!

What is important to note is that the algorithm is non-deterministic because merge, split and tag usually offer
multiple choices. To remove this non-determinism, we need to design some installation strategies that resolve
these choices. Here are some examples of such installation strategies®.

Strategy || Description
1 || chaining + data-shipping
use strategy 1 when # local files > 1, otherwise use recruiting + query-shipping
use strategy 1 when F#local files > #remote files, otherwise use recruiting + query-shipping
hybrid-shipping

=W N

In order to evaluate the quality of such installation strategies, we need to be able to compare them to some
“gold-standard”. In our case, this is the textbook distributed query optimization algorithm [7, 5] based on
dynamic programming, adapted for distributed settings as presented in [4]. This algorithm (refer to it as “DP”)
is guaranteed to find a minimum-cost plan. However, while we wish to compare the plans that our algorithm
produces to those obtained by DP, we do not try to use DP itself in ubQL installation. Running DP requires
globally complete and timely knowledge of the entire system at each of the query sites where full optimization is
attempted. This is not practical for the systems we have in mind. In our approach the installation of a query is
spread among several sites, with much fewer alternatives explored. We do not expect to find the minimum cost
plan but we hope to find a plan that is not much worse.

To compare against DP, we generate some random configurations and compare the plans produced by DP
with the ones produced by our installation strategies. Our random configurations correspond to tree-queries (a
generalization of the example of Figure 1) and are defined with multiple layers of mediators, intermediate views
and base relations located at various sites. For our experiments, we use 10 base relations, 5 sites and 3 layers of
mediators. The query to be installed is a join of the 10 base relations, expressed as a join of some intermediate
views. For this experimental configuration, we do not consider redundancy (only one way to merge gp’s) and we
assume only one query in the system.

For each configuration, we look at 3 scenarios where the size of the relations differ. For the kind of applications
we have in mind, it is not realistic to assume accurate cost information. We therefore consider a binary cost-model
where relations can be either small 2 or big. The cost-model we use is defined below.

Cost model Cardinality
shipping(A) 50 + |A| % 10 |A < B| = min(|A], |B]) if A or B is small
cost(A < B) 3 xmaxz(|A|,|B|) |A < B| = |A| * |B| * 3 otherwise

The installation strategies mentioned previously (1 to 4) are unfortunately too naive to produce some rea-
sonably good plans: they do not use any cost information. Another strategy (see Figure 3-left) makes use of
some binary cost ® information and produces plans that compare reasonably (see Figure 3-right *) to the ones
produced by DP.

IThese strategies resolve some choices, but not all.

2Small relations are a good way to describe Web queries since a selection can always be represented as the join with a one-row
relation.

3When using some binary cost information, from a query process point of view, an expression can be described in terms of its
local/remote small and local/remote big relations.

4These experimental results correspond to the simulated installation of query processes. The simulator is a piece of Java code
that applies the various installation strategies.

Note that Strategy 5 produces only one plan (in linear time, compared to exponential time for DP). We
conclude that there exists installation strategies using some partial information (binary cost-model and partial
local information) that can be successfully used in the ubQL installation algorithm.

Strategy 5 Cost ratios for Stragegy 5
process rewritings

chaining if localBig > 0 and small > 0
chaining if localSmall > 0

recruiting if local = 0

recruiting if smallLocal > 0 and bigLocal = 0
recruiting if small = 0

expression rewirtings

if remote = 0 join small relation first

if remoteSmall > 0, hybrid shipping

@ Shipping x 1
| Shi 2
12 ipping X

cost(ubg plan) / cost(DP plan)

and join locally with remote small 09- '
Configurations
if remoteSmall = 0, hybrid shipping ’
and ship local small to remote site biy-8 sma -2 by-2 sma -B same size

Figure 3: Quality of plans produced using Strategy 5, compared to DP.

5 Conclusion and Future Work

In this paper, we have presented ubQL, a language to describe and deploy distributed queries. The language
consists of a set of primitives that can be added on top of any query language. Using the language we can describe
well-known distributed query patterns. More interestingly, we have presented an algorithm that permits to
rewrite a query and produce a reasonably good evaluation plan, even for local and partial cost information. The
quality of such produced plans has been compared with dynamic programming for a mediator-like distributed
setting, for single queries and no replication.

In future work, we need to investigate installation strategies that can take into account redundancy in
resources and the presence of multiple queries running at the same site. We also intend to enrich the language
with process combinators in the spirit of [1] to monitor the execution of a given query and support interleaving
execution and installation, yielding a degree of adaptivity [2] to ubQL. Finally, we plan to implement the ubQL
primitives on top of XQuery [9].

References

[1] Luca Cardelli and Rowan Davies. Service combinators for web computing. IEEE Transactions on Software Engineering,
25(3):309-316, May/June 1999.

[2] Joseph M. Hellerstein, Michael J. Franklin, Sirish Chandrasekaran, Amol Deshpande, Kris Hildrum, Sam Madden, and
Vijayshankar. Adaptive Query Processing: Technology in Evolution. IEEE Data Engineering Bulletin, 23(2):7-18,
June 2000.

[3] Donald Kossmann. The State of the Art in Distributed Query Processing . Submitted to ACM Computing Surveys.

[4] Donald Kossmann and Konrad Stocker. Iterative Dynamic Programming: A New Class of Query Optimization
Algorithms. ACM TODS, March 2000.

[6] Guy M. Lohman, Dean Daniels, Laura M. Haas, Ruth Kistler, and Patricia G. Selinger. Optimization of nested queries
in a distributed relational database. In VLDB, 1984.

[6] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I and II). Information and Computation,
100:1-77, 1992.

[7] M. Tamer Ozsu and Patrick Valduriez. Principles of Distributed Database Systems. Prentice Hall, 2 edition, 1999.

[8] Tolga Urhan and Michael J. Franklin. XJoin: A Reactively-Scheduled Pipelined Join Operator. IEEE Data Engineering
Bulletin, 23, June 2000.

[9] W3C. XQuery: A Query Language for XML. W3C Working Draft 15 February 2001. Available from
http://www.w3.org/TR/2001/WD-xquery-20010215/.

