Probabilistic Data Integration Systems

Dan Suciu

Joint with Nilesh Dalvi, Brian Harris, Brent Louie, Chris Re
Motivation

• Today’s data integration techniques are well-suited for well-structured data integration tasks
 – Enterprise applications
• Do not cope well with imprecisions
 – Scientific data, heterogeneous data (text), even enterprise data
• This talk proposes: Probabilistic Data Integration
 – Imprecisions represented explicitly as probabilities at all levels of integration
Example of Imprecision: Object Reconciliation

• Same object has different representations in two different databases:
 – Same gene in Entrez and Swissprot
• Record linkage, deduplication, etc
• Today’s techniques:
 – Similarity score
 – Threshold to classify into match/non-match

PDIS: keeps the scores natively, as probabilities
Information Extraction

• Increasing amount of data extracted from text
 – Email messages
 – User manuals
 – Blogs

• Example: the Avatar System at IBM

• Data is *inherently* imprecise:
 – Extracted data has limited use

• Data integration needs to account for imprecision

PDIS: keeps the scores natively, as probabilities
Scientific Data

• Different sources have various degrees of quality:
 – Curated/uncurated
 – Links computed using various methods
Uncertainty Metrics For Result Ranking in BioMediator

- Quality of data source
 - 1.0: SwissProt (Human curated)
 - 0.7: Trembl (Predictions)
- Quality of record in a source
 - 1.0: Validated (RefSeq status code)
 - 0.7: Provisional (RefSeq status code)
- Quality of links between sources
 - 1.0: Foreign keys (RefSeq ids in records)
 - 0.7: Text search of record (OMIM)
- Quality of a specific link between records
 - E-values (BLAST, HMM’s)
 - Foreign keys

Overall Uncertainty (UII) Score
- Per entity, takes into account all sources of uncertainty
- Belief in the quality of the “relevance” between query seed and a particular result
- *The results can then be ranked by UII score*
PDIS

• Represent imprecisions at all level of data integration:
 – Wrappers
 – Data transformations
 – Mediated schema
 – Query language
 – Query answers
Two Challenges

• Efficient query processing
 – At UW we have made progress with the MystiQ system

• Constraints
Query Processing in MystiQ (Demo)

http://mystiq.cs.washington.edu/
Constraints

• “address” may be shippingAddress or billingAddress:

\[\forall t \in \text{LocalData} \Rightarrow \exists u \in \text{MediatedData}. \ t.\text{address}=u.\text{shippingAddress} \]
\[\text{confidence} = 0.8 \]

\[\forall t \in \text{LocalData} \Rightarrow \exists u \in \text{MediatedData}. \ t.\text{address}=u.\text{billingAddress} \]
\[\text{confidence} = 0.2 \]
Taxonomy of Constraints

<table>
<thead>
<tr>
<th>Deterministic constraints</th>
<th>Probabilistic data constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic data</td>
<td>Probabilistic data</td>
</tr>
<tr>
<td>Constraint violations</td>
<td>Cleaning</td>
</tr>
<tr>
<td>Probabilistic data exchange...</td>
<td>... of probabilistic data</td>
</tr>
</tbody>
</table>
Conclusions

• Trend in Computer Science:
 – deterministic --> probabilistic

• Data integration under similar pressures

• What’s in for us:
 – This stuff is hard, researchers needed !!!
 – Query processing: still ill understood
 – Constraints, mappings, XML etc: way in the future