Schema Mapping
Breakout Session

AnHai Doan, Howard Ho, Sergey Melnik,
Renée J. Miller, Dan Suciu, Val Tannen, Ben Ashpole, Michael Fitzmaurice, Greg Karvounarakis
Nature of the Problem

• Schema Mapping
 – Representation or specification of the semantics or interpretation of the relationship between models of data

• Problems
 – Creation, maintenance, management, understanding (debugging), interpretation
 – Use (in data exchange, query reformulation, updates, data synchronization, etc.)
 – Specification formalism
State of the Art (Research)

- Factoring the problem space by mapping management
- Ontology alignment
 - Independent of data transformation
- Mappings for structured data
 - Formal semantics for structured relational and XML data
 - GLAV mappings
- Enterprise environments and some work on mappings for peer data sharing
State of the Art (Research)

• GLAV mappings
 – for relational and nested data, but little work on other models
 – express relationship between queries on two data sources
 – formal representation of structural data transformations and incompleteness
 – solid foundation on:
 • creation, maintenance, (some) debugging
 • use in data exchange, query reformulation, (some) updates
 • operations on mappings (composition, inversion, etc.)
State of the Practice

• Languages
 – views and queries
 • beginning to see limited use of GLAV
 – procedural mapping languages most common
 • scripting languages, eg., XSLT, general programming languages
 • object-relational mapping
 – many proprietary solutions without formal semantics
 • ETL workflow scripts
 • schema annotation frameworks
State of the Practice

• Tools
 – visual tools to help in mapping creation, but creation still largely manual
 – debugging manual
 – execution engines for data transformations are pervasive
Solved Problems, Victories

- Execution engines (optimization, scaling)
- Mapping creation (some impact on products and there is a clear awareness of need)
- Impact on products
 - BEA AquaLogic,
 - MS ADO.NET,
 - IBM WebSphere Information Integrator,
 - IBM Rational Data Architect
Unsolved Problems

• Formal mapping specification
 – Uncertainty, probabilistic, approximate
 – Do more for other models than relational and XML, eg., unstructured data
 – More general logics, eg., negation, aggregation, recursion, higher-order
 – Formalisms for ETL, EAI (aka web services)
 – Visual specifications
 – Standardization
 – Mappings between Web service specifications
 – Streaming, sensor data
Unsolved Problems

• Unifying theories of mapping usage (e.g., interchange = integration + exchange, integration + update propagation)
• Shared datasets and benchmarks (need to learn from ontology alignment contests)
 – measures of success
• Tools that scale with schema, specification, network complexity
• Usability
 – understanding and debugging mappings
 – design theory for mappings
• Mapping in non-enterprise environments
 – dynamic web or networked environments
• Optimization in execution engines to exploit redundancy
• Runtime environments (synchronization, exception handling)
• Interaction between mappings and privacy
Challenge domains

• Healthcare
• Life sciences
• Ecology
• Homeland security
• Scientific discovery
• Web communities
Community challenges and resources

• Incentive systems for creating and sharing mappings and tools
 – Incentives administered by funding agencies

• Standardization

• Educational component, training